
Micro-controller Programming

using AtMega32 on KuttyPy

Chapter 1

Introduction

Modern computers perform a variety of tasks like managing our bank accounts, providing
entertainment, navigation during our journeys and even playing games like chess. Most of
us are amazed by their capabilities and sometimes doubt that they are really intelligent
like humans. Are they really intelligent? The only way to answer this question is to
explore the internal working of the computers. It appears that computers can represent
and manipulate information in the form of text, pictures, audio, video etc. Let us consider
the following aspects.

� Representing Information: If we consider the storage aspect carefully we can re-
alize that every piece of information can be represented using a sequence of numbers,
for example the typed matter you are reading now. Each character is represented
by some number (for example in the ASCII code the number 65 represents the
character A). In a similar manner a picture can be represented as a collection of
pixels, with their positions and colors represented by numbers. So we can come to
the conclusion that every type of information can be represented as a sequence of
numbers.

� Storage of Numbers: We use the decimal system (with base 10) but that is not
the only scheme possible. Computers use the binary number system where the base
is 2. Under this scheme the possible digits are 0 and 1 only. It is easy to represent
them using electronic switches because a switch has two states, closed or open. We
can also use two voltage levels to represent 0 and 1. So we can conclude that any
piece of information can be stored in the binary format using a sequence of switches.
The electronic switches form the memory elements that store the information.

� Operations: The third aspect is how to manipulate the information stored as
binary numbers. The electronic circuits inside the micro-processor can perform
arithmetic and logical operations (adding, subtracting, comparing etc.) only.

� Sequencing of Operations: The �nal requirement is to perform these operations
in a prede�ned sequence, like add two numbers and then do some other operation
depending on the result. This sequence of operations also can be stored as numbers,
called machine language instructions. The logic circuits inside a microprocessor is
capable of bringing the sequence of instructions stored in the memory and perform
the speci�ed operations.

To illustrate this process let us consider an example, without using any computer. We
need to generate the multiplication table of a number, by using four scratchpads (A,B,C

2

CHAPTER 1. INTRODUCTION 3

and D, where we can write one number at a time) and some mechanism to copy or add a
number from one scratchpad to another.

� Task: Generate the multiplication table of 5 (1 to 10)

� Resources:

� Scratchpads A,B,C and D where you can wrtite one number at a time.

� Ability to Move, Add and Compare numbers.

� Procedure:

� Write zero to A

� Write zero to B

� Write 5 to C

� Add C to B

� Send B to the output

� Increment A

� Compare A to 10

� Go to step 4 if A is smaller

The steps given above can be represented using some symbols as shown below.

This process can also be done using logic gate circuits. The instructions like CLR,
ADD etc. can also be represented using numbers, called Op-Codes. We can see that there
are 11 instructions in total. They can be stored in a sequence of memory locations and
brought in one by one for execution. The scratchpad D can be used for keeping track of
the memory location from which the instruction should be brought, a Program Counter.

1.1 The micro-processor

This stored-program concept was �rst proposed by John von Neumann and others in
1945, which is known as the von Neumann architecture. All the modern computers
still follow the same architecture but the speed is getting increased by processing more
instructions per second, by increasing the width of the registers and memory, performing
many operations in parallel etc.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: a)Micro-processor block diagram. b)Micro-controller block diagram

A micro-processor (also called CPU or Central Processing Unit) requires external
memory and Input/Output systems to form a computer. A micro-controller is a micro-
processor combined with program and data memory, peripherals like analog to digital con-
verters, timer/counters, serial communication ports and general purpose Input/Output
ports, etc. on a single integrated circuit. Tasks requiring smaller amounts of process-
ing power and memory are generally implemented using micro-controllers (uC). They are
mostly embedded in equipment such as automobiles, telephones, home appliances, and
peripherals for computer systems. Block diagrams of a micro-processor and a micro-
controller are shown in �gure 1.1.

Chapter 2

AVR series Micro-controllers

There are plenty of AVR micro-controller development kits in the market, like Arduino.
Most of them focus on explaining the hardware and software of the development kit rather
than the micro-controller. They teach programming the I/O pins of the development
board using the library functions provided and the user can get things done without
understanding anything about the micro-controller. The objective of this work is to help
learning uC architecture and programming, not the development board. The focus will
be on the features of the micro-controller without hiding its details from the user.

Intel 8051, Atmel AVR, PIC etc. are popular micro controllers available in the market.
We have chosen ATmega32 micro-controller from Atmel AVR series, after considering
the hardware resources available on it and the support of Free Software tools like GNU
assembler and C compiler. A block diagram of an AVR series micro-controller is shown
in �gure 2.1. The micro-processor sections are outlined in blue.

� R0 to R31, 32 numbers of 8 bit wide General Purpose Registers.

� The Program Counter PC, instruction to execute is brought from the memory lo-
cation speci�ed by the PC.

� Status and Control Register SREG, updated after every ALU operation.

� The Stack Pointer Register. SPL and SPH are combined to form a 16 bit address.
Used by PUSH and POP instructions.

The peripheral devices like Input/output ports, ADCs etc. are controlled using Special
Function Registers (SFR). To really understand the working of a microprocessor/microcontroller
you need to write programs in Assembly language, by manipulating the contents of various
Registers and Memory locations.

2.1 AVR Architecture

A schematic of the AVR architecture is shown in �gure 2.1. The 32 General Purpose Reg-
isters (R1 to R31, 8 bit wide) are also called the Register File. Data is moved between the
Registers and the memory. Addressing memory locations above 255 is done by combining
two 8bit registers to form a 16 bit register.

The registers R26 to R31 has some special properties to support indirect addressing
requiring a 16 bit address. They are paired to support 16 bit addreessing as shown in
the �gure 2.3. R26 and R27 combined is the X register, R28 with R29 is the Y register,

5

CHAPTER 2. AVR SERIES MICRO-CONTROLLERS 6

Figure 2.1: AVR series microcontroller

Figure 2.2: AVR memory maps.(a)Data memory.(b) Program memory

and R30 with R31 is the Z register. Di�erent types of addressing modes are de�ned for
transferring data between the Registers and the memory locations, mostly the SRAM.

In the AVR data memory space (�gure 2.2), locations 0 to 31 (0x1F)are occupied by
the Register File. Generally the assembler refers to them by names R1 to R31, not by
the adresses.

2.1.1 Special Function Registers (SFR)

Location 0x20 to 0x5F (32 to 95 decimal) are occupied by the Special Function Registers
(SFR), like the Status Register, the Stack Pointer and the control/status registers of the
peripherals. The Special Function Registers can also be accessed using the I/O address
space ranging from 0 to 0x3F, using IN and OUT insructions. The examples in this
document will use the memory mapped addresses and not the I/O mapped ones.

The �rst Register is SREG, the status register that holds the �ags resulting from

CHAPTER 2. AVR SERIES MICRO-CONTROLLERS 7

Figure 2.3: Registers X,Y and Z

the last executed arithmetic or logical instruction. There are several instructions whose
results depend on the status of the bits inside SREG. Availability of SREG as a special
function register allows us to examine the status of various �ags, after arithmetic and
logical operations. Stack Pointer is used as a pointer to the data address space. PUSH
and POP instructions are used for moving data between the register �le and location
speci�ed by the stack pointer.

All the peripherals and the general purpose I/O ports are operated by accessing the
corresponding SFRs. We need to know about the I/O ports A,B,C and D because our
example programs will be using them to display results. The SFRs used often in the
example programs are listed below.

Name I/O Addr. Mem Addr Function

SREG 0x3F 0x5F Status Register
SPH 0x3E 0x5E Stack pointer high byte
SPL 0x3D 0x5D Stack pointer low byte
PIND 0x10 0x30 Input from Port D
DDRD 0x11 0x31 Data Direction of Port D
PORTD 0x12 0x32 Output to Port D, controls pull-up register for input bits
PINC 0x13 0x33 Input from Port C
DDRC 0x14 0x34 Data Direction of Port C
PORTC 0x15 0x35 Output to Port C, controls pull-up register for input bits
PINB 0x16 0x36 Input from Port B
DDRB 0x17 0x37 Data Direction of Port B
PORTB 0x18 0x38 Output to Port B, controls pull-up register for input bits
PINA 0x19 0x39 Input from Port A
DDRA 0x1A 0x3A Data Direction of Port A
PORTA 0x1B 0x3B Output to Port A

2.2 Writing Source Code and Assembling/Compiling

The programs can be written using any Text Editor. The resulting �le is called the Source
Code. This need to be translated into the machine language. In the case of Assembly
language, the translating program is called an assembler. The translators for high level
languages like C are called compilers. We are using the AVR GCC compiler, which can
handle both C and Assembly language. The compiler recognizes the type of �le from
the �lename extension, .c for C �les and .S or .s for Assembly language. An uppercase
extension allows the inclusion of header �les where some constants are de�ned.

The translator program runs on a PC and the output need to be transferred to the
target hardware, the AVR micro-controller. Before transferring it is converted into the
Intel HEX �le format, which is a text �le whose format is understood by the uploader
programs.

CHAPTER 2. AVR SERIES MICRO-CONTROLLERS 8

Figure 2.4: Block diagram of KuttyPy

Uploading the HEX �le

In order to execute a new program we need to deposit it inside the Program memory
of the micro-controller. This can be done in di�erent ways. All the modern micro-
controllers provide an interface called SPI (Serial Peripheral Interface) that consists
of three terminals MISO, MOSI and SCK. There are uC programmers like USB ASP
available supporting this standard.

Another popular method is to use a Boot Loader program. The boot loader program is
deposited in the Program memory using the SPI interface. After a reset, the boot loader
listens on the Serial Port of the uC for the arrival of any new program. If available, it is
loaded into the memory and executed. Otherwise the old program residing there will be
executed.

KuttyPyPlus hardware

The block disgram of KuttyPy circuit board is shown in �gure 2.4. The complete circuit
schematic is shown in �gure2.5.

The board has a USB-to-Serial converter chip, to interface it to a PC. To transfer a
new HEX �le to, the uploader program resets the uC so that it enters the Boot loader
code. After that the HEX �le is transferred and the uC is reset again to execute the new
code. In addition to the program loading capability, the KuttyPy boot loader is capable
of accepting commands from the PC to control/monitor all Special Function Registers
(SFR). This allows one to explore the micro-controller from a PC, without writing any
program.

The KuttyPy Android App supports a Visual Programming Language to access the
micro-controller. We can also program the uC using the Android App.

� 8 LEDs are connected from port B to ground, via 10K resistors

� 8 LEDs are connected from port D to ground, via 10K resistors

� 8 switches are connected from Port A to ground via 1K resistors

� A 6 bit R-2R DAC is connected to Port C bits PC2 to PC7, PC0 and PC1 are used
by the I2C interface.

� The negative termnals of an RGB LED are connectd to the PWM outputs PB3,
PD5 and PD7. The common anode is connected to 5 volts. Due to this reason
these LEDs will glow slightly when left in the Input Mode.

� The I2C terminals are made available on a 4 pin Audio Jack connector also.

CHAPTER 2. AVR SERIES MICRO-CONTROLLERS 9

Figure 2.5: The circuit schematic of Kuttypy

Chapter 3

Assembly Language Programming

Main objective of this chapter is to learn the architecture of a micro-controller rather
than developing large assembler programs. The main concern with assembly or machine
language coding is that the program is speci�c to the architecture of the selected device.
Our approach is to explore the architecture in a generic manner and provide some example
programs that are more or less common to most of the processors.1

Main components of a micro-controller are shown in �gure2.1. After powering up (or
Reset) the Program Counter in initialized to zero, so that it points to the beginning of the
Program Memory. The instruction stored at that location is brought to the Instruction
Decoder and executed. This could be operations like; moving data between the General
Purpose Registers (R0 to R31) or from a Register to a memory location, performing
some arithmetic and logical operations, changing the content of the program counter,
etc. The Special Function Registers are used for accessing the peripheral devices like
Input/Output ports, ADCs, Timer/Counter etc. The popular family of micro-controllers
like 8051, AVR and PIC follows the same architechture, even though the details may
di�er. Understanding them from a generic point of view will help switching from one
type of controller to another without much e�ort.

To program in assembly language, we need to have some understanding about the
Instruction Set, the Registers and the memory con�guration of the micro-controller. We
also need to know the syntax supported by the assembler we use, there is usually small
di�erences between various assemblers. Since we are using Atmega32, belonging to the
AVR family, and the GNU assember for AVR, further discussions will be restricted to
them.

3.1 Format of an Assembler Program

A single line of code may have a

� Label: Always terminated by a colon. A line is labelled only if there is a jump or
call to that line

� The instruction: Any valid instruction from the instruction set of the controller

� The operands: There could be 0, 1 or 2 of them, depending on the instruction

� Comment: anything after a semicolon is taken as a comment

1http://sourceware.org/binutils/docs/as/

10

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 11

lab1: INC R1 ;increment the content of Register r1

The instruction and operand is not case sensitive but the labels are case sensitive, Lab1
is not the same as lab1.

Constants can be de�ned in two di�erent ways, as shown below.

.equ DDRB, 0x37

DDRB = 0x37

Variables are de�ned inside the Data Sections as shown below.

.section .data ; the data section

var1:

.byte 15 ; global variable var1

Code is written under the Text Section, as shown below. This section should have a label
named main and it should be declared Global.

.section .text ; The code section

.global __do_copy_data ; initialize variables

.global __do_clear_bss ; setup stack

.global main ; declare label main as global

main:

.end

1. .data, starts a data section, initialized RAM variables.

2. .text, starts a text section, code and ROM constants.

3. .byte, allocates single byte constants.

4. .ascii, allocates a non-terminated string.

5. .asciz, allocates a \0-terminated string.

6. .set declares a symbol as a constant expression (identical to .equ)

7. .global, declares a public symbol that is visible to the linker

8. .end, singi�es the end of the program

The lines .global __do_copy_data and .global __do_clear_bss will tell the compiler to
insert code for initializing variables, which is a must for programs having initialized data.
The .text .section declaration is not enforced by GCC assembler. A minimal program
that can be assembled without error is shown below.

.global main

main:

This code does nothing useful but will have some initialization instructions added by the
compiler.

Now, let us write an example program to add two numbers (the instructions will be
explained soon, �rst we need to learn howto assemble the code and execute it)

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 12

Figure 3.1: KuttyPy IDE

.section .text

.global main

main:

LDI R16, 5 ; load R16 with 5

LDI R17, 10 ; load R17 with 10

ADD R16, r17 ; R16 <- R16 + R17

3.2 Writing, Assembling and Uploading

The IDE can be used for editing source code, compiling/assembling, uploading it to the
AtMega32 micro-controller and executing it. The KuttyPy software can be downloaded
from https://csparkresearch.in/kuttypyplus. It contains three programs;

� KuttyPy GUI, provides a GUI to explore Atmega32 on a KuttyPy board

� KuttyPy Plus GUI, provides a GUI to explore Atmega32 on a KuttyPyplus board

� KuttyPy IDE, for editing, assembling/compiling and uploading to Atmega32

For program development, we need to use KuttyPy IDE. A screenshot of it shown in
�gure 3.1.

The KuttyPy IDE is also capable of accepting source code from a remote machine and
send the .hex �le back. This feature is used by the KuttyPy Android App to support
Assember and C programming on Android phones. The KuttyPy App can be downloaded
from Google playstore.

3.2.1 Using command line programs

The source code may be created by using any text editor. For assembling it we are using
the AVR GCC compiler, which can translate both Assembly and C language programs.
The output of the compiler need to be converted into a format (Intel HEX) understood by
the uploader program and the Boot Loader inside the micro-controller. The commands
to be used are given below:

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 13

Figure 3.2: Atmega32 Pinout

avr-gcc -Wall -O2 -mmcu=atmega32 -o add add.S

avr-objcopy -j .text -j .data -O ihex add add.hex

The resulting .hex �le can be uploaded by a program named avr-dude, using the command

avrdude -b 38400 -P /dev/ttyUSB0 -pm32 -c arduino -U flash:w:add.hex

The parameters are for the KuttyPy board.
If you want to generate a .lst �le, to view the generated instructions, use the command

avr-objdump -S add > add.lst

Look for the lines following <main>: to view the output of your code. Assembler and
linker add several other things for the proper functioning of it.

3.3 Input/Output ports of Atmega32

Executing add.Smentioned in the previous section will have the result in R16 but it is not
visible to us. We need some method to view the result. The Atmega32 micro-controller
has four Input/Output Ports, named A, B, C and D. These I/O ports are con�gured and
accessed using four sets of Special Function Registers. Each port has 8 bits and the each
bit can be con�gured as input or output, as explained in the next section.

The pinout diagram of Atmega32 is shown in �gure 3.2. There are 32 pins organized
as four ports named A, B, C and D, each 8 bit wide. Each pin can be con�gured as an
input or output. The data direction and transfer are done by writing to the registers
DDRx, PORTx and PINx (where x stands for A, B, C or D).

� DDRx : Direction of every pin of an I/O port is decided by the state of corresponding
bit in the Data Direction registers DDRx. To con�gure a pin as output, make the
bit 1, and to make it as input make it zero. For example, DDRA = 1 will con�gure
BIT 0 of Port A (PA0) as output, and all other pins as input.

� PORTx : For pins that are con�gured as ouput, assigning a value to PORTX will
set that data on them. For example PORTA = 1 will make PA0 high, that can be
measured on the pin number 40 of the IC.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 14

� PINx : For the pins con�gured as inputs, PINx will read the status of the external
voltage level connected to the pins. For pins that are con�gured as outputs, PINx
will return the data written to PORTx.

If the pins con�gured as inputs are left unconnected, there could be unwanted level changes
due to electrical noise, this can be prevented by enabling the internal pull-up resistor. For
pins that are con�gured as inputs, setting/clearing the bits in PORTx will enable/disable
the corresponding internal pull-up resistor.

3.4 How to view the Register Contents

The KuttyPy board has LEDs connected to Port B and D. To view the content of any
register, we can transfer it to either port B or D. The example program 'add.S' shows
howto display the results on the LEDs connected to the I/O ports.

ddrb = 0x17 ; I/O mapped address of DDRB, use OUT instruction

portb = 0x18

.section .text

.global main

main:

LDI R16, 255 ; load 255 to R16

OUT ddrb, R16 ; send R16 contents to DDRB, make all pins as outputs.

LDI R16, 5 ; load R16 with a number

LDI R17, 10 ; load R17 also

ADD R16, r17 ; R16 <- R16 + R17

OUT portb, R16 ; send R16 to port B, to light the LEDs

The OUT DDRB, 255 instruction sets all the bits of DDRB, making all the pins of Port
B as output. OUT PORTB, R16 copies the content of R16 to the register PORTB.
The value of the individual bits decides the voltage level of the corresponding pin. For
example, if R16 is 15, the four LSBs will become HIGH. If we use the STS instruction
instead of OUT, then the memory mapped addresses 0x37 and 0x38 should be used.

3.4.1 Using the Pre-processor Option

The constants like PORTB, DDRB etc. are de�ned inside a �le and we can request the
pre-processor to include them. In order to do this

� We need to use the .S �le extension to tell avr-gcc to call the assembler with the
suitable pre-processor options.

� The source should have a line

� #include <avr/io.h>

This is an option provided by the AVR GCC Assembler. Methods may be di�erent for
other assemblers. We will be using this option in the examples given in this document.
The program add-2.S, that uses the header �le, is shown below.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 15

The include �le avr/io.h contains the memory mapped addresses of the Special Func-
tion Registers. You need to use STS and LDS instead of OUT and IN. To avoid any
con�ict we are de�ning the I/O mapped addresse names using small letters.

#include <avr/io.h>

.section .text ; denotes code section

.global main

main:

LDI R16, 255 ; load R16 with 255

STS DDRB, R16 ; set all bits of port B as output

LDI R16, 11 ; load R16 with 2

LDI R17, 4 ; load R17 with 4

ADD R16, R17 ; R16 <- R16 + R17

STS PORTB, R16 ; result to port B

.END

3.5 Atmega32 Instruction Set

The AVR instructions are broadly classi�ed into several types. We will consider some
examples belonging to each type. For a complete description, refer to the Atemega32
databook.

� Data Transfer, using di�erent addressing modes

� MOV Rd, Rs ; Move between registers, from source (Rs) to destination (Rd)

� LDI Rd, K ; Load immediate. The byte is part of the program

� LD Rd, X ; Load indirect, from the address speci�ed by X

� ST X, Rs ; Store indirect, to the location speci�ed by X (R26 and R27)

� STS K, Rd ; Store direct to SRAM location K

� LDS K, Rd ; Loads direct from SRAM location K

� PUSH Rr ; Stores Rr to the memory speci�ed by the Stack Pointer, decreases
SP by 1

� POP Rd ; Loads Rd from the memory speci�ed by SP, increases SP by 1

� OUT P, Rr ; Sends Rr to the I/O mapped address P

� Arithmetic and Logic

� ADD Rd, Rr ; Adds to registers, result goes to Rd

� SUB Rd, Rr ; Subtracts to registers.

� AND Rd, Rr ; Logical AND of two registers, result goes to Rd

� CLR Rd ; Clears the register

� Branching Instructions

� JMP K ; Puts K in PC, results in a direct jump to location K

� RJMP K ; Relative jump PC <- PC + K + 1

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 16

� CALL K ; PC goes to K+1, PC is pushed to the Stack

� RCALL k ; Relative call, PC <- PC + K + 1

� RET ; PC is retrieved from Stack

� BRNE k ; Relative jump if Z bit in SREG is set. PC <- PC + K + 1

� But Testing and Setting

� CP Rd, Rr ; Compare the registers and set the bits of SREG accordingly

� LSL Rd ; Logical Shift Left

� MCU control

� NOP ; Does nothing, takes one clock cycle

� SLEEP ; Enters Sleep mode, to be waken by an interrupt

For a complete list of instructions supported by Atmega32, refer to the data sheet. We
will only examine some of them to demonstrate di�erent types of memory addressing and
the arithmetic and logical operations.

3.6 Data Transfer, Addressing Modes2

The micro-controller spends most of the time transferring data between the Register File,
SFRs and the RAM. Let us examine the di�erent modes of addressing the Registers and
Memory.

3.6.1 Register Direct (Single Register)

The contents of the register is read, speci�ed operation is performed on it and the result
is written back to the same register. For example

Lab1: INC R2 ; increments Register 2

The line above shows the format a line of code in assembly language. The label �eld is
required only if the program needs to jump to that line. Everything after the semicolon
is comment only.

3.6.2 Register Direct (Two Registers)

The contents of the source and destination registers are read, speci�ed operation is per-
formed and the result is written back to the destination register. The format is to specify
the destination �rst. For example

MOV R2, R5 ; content of R5 is copied to R2

ADD R1, R2 ; r1 + r2 stored to r1

2https://www.arxterra.com/5-avr-branching/

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 17

3.6.3 Load Immediate

In this mode, data to be transferred to a register, is part of the program itself. Registers
below R16 cannot be used under this mode.

; data-immed.S , demonstrate Load Immediate mode

ddrb = 0x17 ; I/O mapped address of DDRB

portb = 0x18 ; and PORTB

.section .text ; denotes code section

.global main

main:

LDI R16, 255 ; load R16 with 255

OUT ddrb, R16 ; Display content of R16

OUT portb, R16 ; using LEDs on port B

.end

The LEDs connected to port B will display the value moved to R16

3.6.4 Data Direct

In this mode, the address of the memory location containing the data is put in a reg-
ister, and it is used in the Data Transfer instruction. Data could be transferred from
memory register (LDS) or from a register to memory(STS). The example data-direct.S
demonstrates the usage of LDS and STS instructions. The address that can be accessed
is limited from 0 to 255, because we use an 8 bit register.

First we use the Load Immediate mode to initialize R16 with some value. Then R16
contents are Stored to the memory location DDRB. After that R17 is loaded from the
memory location DDRB. This is then Stored to location PORTB.

ddrb = 0x17

portb = 0x18

PORTA = 0x3b ; memory mapped address of PORTA

.section .text ; denotes code section

.global main

main:

LDI R16, 0xff ; load r16 with 255

OUT ddrb, R16 ;

STS PORTA, R16 ; Store R16 to the memory location PORTA

LDS R17, PORTA ; read it back to R17

OUT portb, R17 ; display it on port B LEDs

.end

3.6.5 De�ning variables in memory

In the previous example we used the addresses of the Special Function Registers. Now we
de�ne a variable in the Static RAM area. 'data-direct-var.S' is listed below.

ddrb = 0x17

portb = 0x18

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 18

.section .data

var1:

.section .text ; denotes code section

.global main

main:

LDI R16, 0xff ; load r16 with 255

OUT ddrb, R16 ; make all bits of port B as output

LDI R16, 15 ; load R16 with a number

STS var1, R16 ; Store R16 to location var1

LDS R17, var1 ; Load R17 from var1

OUT portb, R17 ; display R17 contents

.end

The label 'var1', de�ned inside the data section is used inside the code. The actual value
can be seen from the .lst �le generated by the avr-objdumb program. Generated machine
language code for the section 'main' is shown below.

0000006c <main>:

6c: 0f ef ldi r16, 0xFF ; 255

6e: 07 bb out 0x17, r16 ; 23

70: 0f e0 ldi r16, 0x0F ; 15

72: 00 93 60 00 sts

0x0060, r16 ; 0x800060 <__DATA_REGION_ORIGIN__> 76:

10 91 60 00 lds

r17, 0x0060 ; 0x800060 <__DATA_REGION_ORIGIN__> 7a:

18 bb out 0x18, r17 ; 24

It can be seen that the label 'var1' is given the RAM address of 0x0060. Also note that
the main is at address 0x0000006c in the program address space. Examine the .lst �le to
have a look at the complete code, including the sections added by the assembler.

3.6.6 Data Indirect

In the data-direct mode, the address of the memory location is part of the instruction
word. In Data Indirect mode the address of the memory location is taken from the
contents of the X, Y or Z registers. This mode has several variations like pre and post
incrementing of the register or adding an o�set to it. Program data-indirect.S is listed
below.

ddrb = 0x17

portb = 0x18

.section .data ; data section starts here

var1:

.section .text ; denotes code section

.global main

main:

LDI R16, 0xff ; load r16 with 255

OUT ddrb, R16 ; make all bits of port B as output

LDI R17, 0b10101010 ; set r17 to 10101010b

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 19

STS var1, R17 ; store it to RAM at var1, using direct mode

LDI R26, lo8(var1) ; R26 and R27 forms X, the 16 bit address

LDI R27, hi8(var1)

LD R16, X ; Load R16 from location pointed to by X

OUT portb, R16 ; display R16 contents

.end

The operators lo8() and hi8() are provided by the assembler to extract the high and low
bytes of the 16bit memory address. Indirect addressing using the registers X,Y and Z
o�er many variations, like auto-increment of the pointer after the operation.

3.7 Variable Initialization

In the previous examples, we have not initialized the global variable 'var1' inside the
program. The example global-init.S listed below demonstrates this feature.

ddrb = 0x17

portb = 0x18

.section .data

var1:

.byte 0xee

.section .text ; denotes code section

.global __do_copy_data ; initialize global variables

.global __do_clear_bss ; and setup stack pointer

.global main

main:

LDI R16, 0xff ; load r16 with 255

OUT ddrb, R16 ; make all bits of port B as output

LDS R16, var1 ; load R16 from location 'var1'

OUT portb, R16 ; display R16 contents

.end

The lines

.global __do_copy_data ; initialize global variables

.global __do_clear_bss ; and setup stack pointer

are for initializing variables and setting up the stack, essential for programs with initialized
data.

3.7.1 Storing to the Stack, PUSH and POP

A region of memory can be allocated as Stack, by pointing the Stack Pointer register
(SPL and SPH) to it. Data can be stored and retrieved in the �Last in �rst out� mode.
The last item pushed is retrieved by a pop instruction.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 20

ddrd = 0x11

portd = 0x12

ddrb = 0x17

portb = 0x18

.section .text ; denotes code section

.global __do_clear_bss ; setup stack pointer

.global main

main:

LDI R16, 0xff ; load r16 with 255

OUT ddrb, R16 ; make all bits of port B as output

OUT ddrd, R16 ; make all bits of port D as output

LDI R16, 1

PUSH R16 ; push R16 content to the stack

INC R16

PUSH R16 ; push the incremented value

POP R17 ; should pop the last pushed value (2)

POP R18 ; shoul pop the previous value (1)

OUT portb, R17 ; display on port B

OUT portd, R18 ; display on port D

.end

Port D should display '1' and Port B the incremented value '2'.

3.7.2 I/O Direct

These type of instructions are to transfer data between the Registers (R1 to R31) and
the Special Function Registers, that can also be accessed as I/O ports. The following
example io-direct.S demonstrates this.

.section .text ; denotes code section

.global main

main:

LDI R16, 255

LDI R17, 0b10101010

OUT 0x17, R16 ; I/O address of DDRB is 0x17

OUT 0x18, R17 ; PORTB is at 0x18, alternate LEDs should glow

.end

Executing this program should switch ON the LED connected to the LSB of Port B.
Modify the program to remove the INC instruction, assemble and upload it again, the
LED should go o�. The generated code is smaller in the case of I/O space addressing
using the OUT instruction, compared to the load direct addressing using STS.

3.8 Arithmetic and Logic

The status register bits are explained in �gure 3.3. The Arithmetic and Logic instructions
a�ect these bits.

The program and.s ,listed below, does a logical AND operation between a register
and an integer. Edit the program to AND with zero instead of one, to see the ero Flag of
the status register set.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 21

Figure 3.3: Status Register

ddrb = 0x17 ; I/O mapped addresses

portb = 0x18

ddrd = 0x11

portd = 0x12

SREG = 0x5F ; memory mapped address of status register

.section .text

.global main

main:

LDI R16, 255 ; load 255 to R16

OUT ddrb, R16

OUT ddrd, R16

ANDI R16, 1 ; result in R16

OUT portb, R16 ; send R16 to port B, to light the LEDs

LDS R17, SREG

OUT portd, R17 ; status to port D

.END

3.9 Program Flow Control

The programs written so far has an execution �ow from beginning to end, without any
branching or subroutine calls, generally required in all practical programs. The execution
�ow can be controlled by CALL and JMP

3.9.1 Jump instructions

The program counter can be modi�ed to change the �ow of execution of the code. Example
'jump.S' demonstrates a direct jump.

#include <avr/io.h>

.section .text ; denotes code section

.global main

main:

LDI R16, 255

STS DDRB, R16

JMP skip

LDI R16, 15

skip:

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 22

STS PORTB, R16

.end

Running jump.S, will put on all the LEDs. Comment the JMP instruction and execute
the code again to �gure out the di�erence it is making. Jumps can be conditional also,
like:

CPI R16, 100

BREQ loop1

The branching will happen only if R16 is equal to 100. Write a program to demonstrate
this

3.9.2 Calling a Subroutine

Subroutines or functions are an important part of modular programming. It is supported
at the hardware level by the CALL and RCALL instructions. For a direct call, the
content of the Program Counter is replaced by the operand of the CALL instruction. For
a relative call, the operand is added to the current value of the Program Counter. In
both cases the current value of the PC is pushed into the memory location pointed by
the Stack Pointer register. The RET instruction, inside the called subroutine, pops the
stored PC to resume execution from the called point. Program sub-routine.s listed below
demonstrates this feature. The program sub-routine.S is listed below.

#include <avr/io.h>

.section .text ; denotes code section

.global main

disp: ; subroutine

STS PORTB, R17 ; send R17 PORTB

RET

.global main

main:

LDI R16, 255

STS DDRB, R16 ; DDRB

LDI R17, 3

RCALL disp ; relative call

;CALL disp ; direct call

.end

The LEDs connected to PB0 and PB1 will glow. Uncomment the line CALL disp and
�nd out the di�erence in the generated code, from the .lst �le. Functionally both are
same but relative jump is possible only if the o�set is less than 256.

3.9.3 Interrupt, Call from anywhere

So far we have seen that the execution �ow is decided by the program instructions.
There are situations where the uC should respond to external events, stopping the current

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 23

Figure 3.4: Interrupt vectors of Atmega32. Addresses according to a 2byte word arrange-
ment.

program temporarily. This is done using Interrupts, that are external signals, either from
the I/O pins or from from some of the peripheral devices. On receiving an interrupt
signal, the processor stores the current Program Counter to the memory location pointed
to by the Stack Pointer and jumps to the corresponding interrupt vector location, as
shown in �gure . For example, the processor will jump to location 0x0002 (0x0004 if you
count them as bytes), if external interrupt pin INT0 is activated, provided the interrupt
is enabled by the processor beforehand.

The interrupt vector location is �lled with the address of the subroutine handling the
interrupt. For the interrupts that are not used by the program, the assembler �lls some
default values. After executing the Interrupt Service Routine, the program execution
resumes at the point where it was interrupted. The program interrpt.S listed below
shows the usage of interrupts. Connect 8 LEDs to Port B and run the code. Connect
PD2 to ground momentarily and watch the LEDs.

3.10 Output of the Assembler

We have learned howto write, assemble and execute simple assembler programs. Let us
assemble a program with a single instruction, as shown below.

; test.s , an single line program

.section .data ; data section starts here

.section .text ; denotes code section

.global main

main:

clr r1

.end

The generated machine language output can be examined by looking at the .lst output,

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 24

shown below, generated by the objdump program. It can be seen that the assembler
generates some code that is required for the proper operation of the uC. In the Atmega32
Program memory, the �rst 80 (50hex) bytes are supposed to be �lled with the addresses of
the 20 interrupt vectors. It can be seen that, the program jumps to location __ctors_end
(54hex). The porcessor status register (0x3F) is cleared and the Stack Pointer is initialized
to 0x085F (the last RAM location), before calling our main section. After returning from
the main, it jumps to _exit (0x6e), clears the interrupt �ag and then enters an in�nite
loop. That means we need to end the main section with an in�nite loop, if our program
uses interrupts.

/home/ajith/microhope/ASM/test: file format elf32-avr

Disassembly of section .text:

00000000 <__vectors>:

0: 0c 94 2a 00 jmp 0x54 ; 0x54 <__ctors_end>

4: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

8: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

c: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

10: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

14: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

18: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

1c: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

20: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

24: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

28: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

2c: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

30: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

34: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

38: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

3c: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

40: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

44: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

48: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

4c: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

50: 0c 94 34 00 jmp 0x68 ; 0x68 <__bad_interrupt>

00000054 <__ctors_end>:

54: 11 24 eor r1, r1

56: 1f be out 0x3f, r1 ; 63

58: cf e5 ldi r28, 0x5F ; 95

5a: d8 e0 ldi r29, 0x08 ; 8

5c: de bf out 0x3e, r29 ; 62

5e: cd bf out 0x3d, r28 ; 61

60: 0e 94 36 00 call 0x6c ; 0x6c <main>

64: 0c 94 3e 00 jmp 0x7c ; 0x7c <_exit>

00000068 <__bad_interrupt>:

68: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>

0000006c <main>:

6c: 88 27 eor r16, r16

0000006e <_exit>:

6e: f8 94 cli

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 25

00000070 <__stop_program>:

70: ff cf rjmp .-2; 0x70 <__stop_program>

3.11 Using Pre-processor, .s and .S

The examples described so far used the .s extension for the �lenames. The program
square-wave-tc0.s listed below generates a 15.93 kHz square wave on PB3.

TCCR0 = 0x53

WGM01 = 3

COM00 = 4

OCR0 = 0x5C

DDRB = 0x37

PB3 = 3

.section .text ;code section

.global main

main:

ldi r16, (1 <�< WGM01) | (1 <�< COM00) | 1 ;CTC mode

sts TCCR0 , r16

ldi r16, 100

sts OCR0, r16

ldi r16, (1 <�< PB3)

sts DDRB, r16

.end

The addresses of the Special Function Registers and the various bits inside them are
de�ned inside the program (�rst 6 lines). Instead of entering them like this, we can use
the corresponding include �le. We need to use the .S �le extension to tell avr-gcc to call
the assembler with the suitable pre-processor options. The same program re-written with
.S extension, square-wave-tc0.S, is listed below.

#include <avr/io.h>

.section .text

.global main

main:

ldi r16,(1 <�< WGM01) | (1 <�< COM00) | 1 ; CTC mode

sts TCCR0 , r16

ldi r16, 250

sts OCR0, r16

ldi r16, (1 <�< PB3)

sts DDRB, r16

.end

The second method is advisable if you plan to develop larger assembler programs for
practical applications.

3.12 Example Programs

The programs described below performs better than their C counterparts.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 26

Figure 3.5: R2R DAC on port B (a) schematic (b) output waveform

3.12.1 R2R DAC on Port C

A R2R network, as shown in �gure 3.5(a), is connected to port C. The program writes
the content of R1 to port C in an in�nite loop. R1 ia incremented every time and after
reaching 255, it will become 0, resulting in a ramp at the output of the R-2R network,
�gure 3.5(b). The frequency of the ramp generated is around 6 kHz.

; program ramp-on-R2RDAC.S , generates ramp on Port C

#include <avr/io.h>

.section .text

.global main

main:

ldi r16, 255

sts DDRC, r16 ; make port C as output

loop:

inc r1

sts PORTC, r1 ; R1 to PORTC, R-2R DAC

rjmp loop

.end

3.12.2 Sine wave Generator

The program sine-wave.S listed below uses Timer/Counter 0 to trigger an interrupt
when the counter reaches the set point register OCR0. Register X is pointed to a sine
table stored in the SRAM. On an interrupt the value from sine table, pointed to by X, is
written to Port B where the R-2R DAC is connected. Register R22 is used for reseting
the pointer after 32 increments. The R-2R DAC on port B generates the instantaneous
DC output values, that makes the sine wave.

#include <avr/io.h>

.section .data

.global stab

stab: ; sine table

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 27

.byte 128,150,171,191,209,223,234,240,242,240,234,\

223,209,191,171,150,128,105,84,64,46,32,21,\

15,13,15,21,32,46,64,84,105,127

.section .text ; code section

.global __do_copy_data

.global __do_clear_bss

.global TIMER0_COMP_vect

TIMER0_COMP_vect: ; ISR

ld r24, X+ ; load from table, increment

sts PORTC, r24 ; write it to PORTB

inc r22 ; increment r22

CPSE r20,r22 ; reached the end of table

reti ; return if NOT equal

clr r22 ; ready for next round

subi r26,32 ; subtract 32 from XL, point to table start

reti

.global main

main:

ldi r16, 255

sts DDRC, r16

ldi r16, (1 <�< WGM01) | 1 ; TCCR0 to CTC mode

sts TCCR0 , r16

ldi r16, 50 ; Set point reg to 50

sts OCR0, r16

ldi r16, (1 <�< OCIE0) ; set TC0 compare interrupt enable

sts TIMSK, r16

ldi r16, (1 <�< OCF0) ; interrupt enable bit

sts TIFR, r16

ldi XL, lo8(stab) ; point X to the sine table

ldi XH, hi8(stab) ; XL = R26, XH = R27

clr r22 ; R22 will keep track of the location in table

ldi r20,32 ; Store size of the table in R20

sei

loop:

rjmp loop ; infinite loop

.end

The output of the code is shown in �gure3.6. The resolution of the R-2R DAC is only 6
bits.

CHAPTER 3. ASSEMBLY LANGUAGE PROGRAMMING 28

Figure 3.6: Sinewave output

Chapter 4

Programming Atmega32 using C

language

For most of the practical applications, programming the micro-controller involves access-
ing the peripheral devices like I/O ports, ADCs, Timer/Counter, Serial communication
port etc. This is done by reading/writing to the Special Function Registers. This chapter
start with some simple examples and presents a library of functions.

4.1 Blinking LED

Writing zeros and ones in a closed loop to an output pin will blink the LED connected to
it. To make it slower we need to insert a delay. The program blink.c is listed below.

#include <avr/io.h>

void delay_ms (uint16_t k) // waits for k milliseconds, for 8MHz clock only

{

volatile uint16_t x;

while(k--) {x=532; while (x--);}

}
int main (void)

{

DDRB = 1; // configure PB0 as output

for(;;)

{

PORTB = 1;

delay_ms(500);

PORTB = 0;

delay_ms(500);

}

}

The functions like delay_ms() will be used by many programs and it is more convenient
to put them in a library.

The program blink-2.c listed below is a modi�ed version of blink.c. This one uses
the delay_ms() function from the library. The Kuttypy IDE will include libkp.a while
linking, you may enable/disable this feature from the IDE.

29

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 30

#include <avr/io.h>

extern void delay_ms (uint16_t k); // delay_ms() is inside the kuttypy library kp
int main (void)

{

DDRB = 1; // configure PB0 as output

for(;;)

{

PORTB = 1;

delay_ms(500);

PORTB = 0;

delay_ms(500);

}

}

4.2 The Kuttypy Library

This section explains several functions, mainly for accessing the peripheral devices like
I/O ports, ADCs, Timer/Counters etc. They are distributed as a static library named
libkp.a, included in the KuttyPy software package. Linking with this library can be
enabled/disabled from the KuttyPy IDE.. The source �les is available in the �les starting
with �kp-�.

� kp-utils.c

� delay_100us(x) : waits for 100x microseconds, assumes 8MHz clock

� delay_ms(x) : waits for x milliseconds, assumes 8MHz clock

Other functions related to the peripheral devices are explained in the corresponding sec-
tions.

4.2.1 Creating and testing the Static Library

This section is only for those who are interested in the details of making a library. The
source code �les for the KuttyPy library are kept inside the subdirectory named 'kplib'.
Change to this directory, and issue the following commands

avr-gcc -g -O2 -mmcu=atmega32a -c kp-adc.c kp-utils.c # add all .c files here

avr-ar -r libkp.a kp-adc.o kp-utils.o # make the library archive, add all .o files

copy the library �le 'libkp.a' to the avr-gcc library path (/usr/lib/avr/lib on Ubuntu)

sudo cp libkp.a /usr/lib/avr/lib/

The header �le containing the prototype de�nitions of all the functions are inside 'kp.h',
kept inside the directory

'/usr/lib/avr/include/avr' on Ubuntu. The programs using the library should have
the following line.

#include <avr/kp.h>

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 31

The following commands can be used for compiling, generating the .hex �le and uploading
a program. Linking with the libkp.a library is done using the -lkp option.

avr-gcc -Wall -O2 -mmcu=atmega32 -o blink blink.c -lkp

avr-objcopy -j .text -j .data -O ihex blink blink.hex

avrdude -b 38400 -P /dev/ttyUSB0 -pm32 -c arduino -U flash:w:blink.hex

4.3 Macros to TEST, SET and Clear BITs

We often need to test the status of speci�c BITs in an SFR or SET/CLEAR them.
The macros given below may be used for this purpose. The macros are converted into
appropriate C code by the pre-processor.

#define BITVAL(bit) (1 <�< (bit))

#define CLRBIT(sfr, bit) (_SFR_BYTE(sfr) &= ~BITVAL(bit))

#define SETBIT(sfr, bit) (_SFR_BYTE(sfr) |= BITVAL(bit))

#define GETBIT(sfr, bit) (_SFR_BYTE(sfr) & BITVAL(bit))

BITVAL(bit position)

The value of bit position could be 0 to 7 in the case of 8 bit integers and 0 to 15 for 16
bit integers. This macro returns (1 <�< bit position). For example BITVAL(3), will give
8, that is binary 1000, obtained by left shifting of 1 thrice.

SETBIT(variable, bit position)

This macro SETS the speci�ed bit in the given variable, without a�ecting the other bits.
For example SETBIT(DDRB, 7), will make the last bit of DDRB high.

CLRBIT(variable, bit position)

This macro clears the speci�ed bit of the given variable. For example CLRBIT(val, 0),
clears the least signi�cant bit of 'val', that is an integer type variable.

GETBIT(variable, bit position)

This macro returns the value the speci�ed bit if the speci�ed bit of the variable is 1, else
it returns zero. For example: if x = 3, GETBIT(x, 1) will return 2 and GETBIT(x,3)
will return zero.

4.3.1 Example Programs

The program copy.c ,listed below, reads port A and sets the same on port B LEDs. We
have enabled the internal pullup resistor on port A so that and it will go LOW only when
it is connected to ground. The Kuttypyplus board has 8 DIP switches connected from
port A to ground.

#include <avr/io.h> // Include file for I/O operations

int main (void)

{

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 32

DDRA = 0; // Port A as Input

PORTA = 255; // Enable pullup on PA0
DDRB = 255; // Configure PB0 as output

for(;;)

PORTB = PINA; // Read Port A and write it to Port B

}

This code cannot be use for manipulating a speci�c bit without a�ecting the others. For
example, if we need to change PB0 depending on the state of PA0, the macros listed
below comes handy. These macros can be used on variables, de�ned in the program, and
also on registers like DDRX, PORTX etc.

Let us rewrite the previous program as copy-bit.c, using these macros as:

#include <avr/io.h>

int main (void)

{

uint8_t val;

DDRA = 0; // Port A as Input

PORTA = 1; // Enable pullup on PORTA, bit 0
DDRB = 1; // Pin 0 of Port B as output

for(;;)

{

val = GETBIT(PORTA, 0);

if (val != 0)

SETBIT(PORTB, 0);

else

CLRBIT(PORTB, 0);

}

}

The same can be done, without using the bit manipulation macros, as shown in copy-
bit-2.c

#include <avr/io.h> // Include file for I/O operations

int main (void)

{

DDRA = 0; // Port A as Input

PORTA = 1; // Enable pullup on PA0
DDRB = 1; // Configure PB0 as output

for(;;)

if(PINA & 1) // If PA0 is set

PORTB |= 1; // Set PB0, by ORing with 00000001b

else // otherwise clear PB0

PORTB &= ~1; // by ANDing with 11111110b (~00000001b)
}

The code fragment shown above uses the Bitwise AND, OR and NOT operators.

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 33

4.4 The alphanumeric LCD Display

https://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller
LCD display
Thefollowing functions to access the display, connected to port C, are available in the

library.

� void lcd_init(void) : initializes the LCD display

� void lcd_clear(void) : clears the LCD display

� void lcd_put_char(char ch) : Outputs a single character to the LCD display

� void lcd_put_string(char* p) : : Displays a string to the LCD

� void lcd_put_byte(uint8_t val) : Diplays an 8 bit unsigned integer

� void lcd_put_int(uint16_t val) : Diplays a 16 bit unsigned integer

� lcd_put_long(uint32_t val) : Diplays an 32 bit unsigned integer

� lcd_put_�oat(�oat val, int ndec) : Diplays a decimal number, maximum 3 digits
after decimal point .De�ning �oat type data increases the program size a lot.

The example program test-lcd.c listed below demonstrates the usage of the LCD display.

#include <avr/kp.h>

int main()

{

lcd_init();

lcd_put_string("A ");

lcd_put_float(45.3, 1);

lcd_put_char(' ');

lcd_put_byte(255);

lcd_put_char(' ');

lcd_put_int(65534);

lcd_put_char(' ');

lcd_put_long(100000);

}

4.5 Serial Communication Port

The Atmega32 micro-controller has a Universal Serial Asynchronous Port (UART). On
the KuttyPy board, the receiver and transmit pins are connected to the USB to Serial
Converter IC. Programs are transferred to the uC using this path, by using the boot
loader program. User programs also can use this path to communicate to the PC via the
USB port.

The following functions are available for handling the UART.

� void uart_init(int baud)

� The maximum baudrate supported is 38400. You may also use 19200, 9600
etc., con�gured to use 1 Stop Bit and even parity.

https://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 34

Figure 4.1: KuttyPy IDE showing output from test-uart.c

� uint8_t uart_recv_byte(void) : Waits on the UART receiver for a character and
returns it

� void uart_send_byte(uint8_t c) : Sends one character over the UART transmitter.

The KuttyPy IDE displays the data send by the UART in a window. The program test-
uart.c is shown below and the output is visible in the IDE screenshot shown in �gure
4.1.

#include <avr/kp.h>

int main (void)

{

uint8_t data = 'A';

uart_init(38400);

while(data <= 'z') uart_send_byte(data++);

}

4.5.1 Communication between PC and uC, via USB port

The USB to Serial chip of the KuttyPy board is connected to the USB port of the PC. To
the programs running on the PC, The USB to Serial interface will appear as a virtual COM
port. On GNU/Linux systems it can be accessed as /dev/ttyUSB0 and on MSWindows
as COMx.

We can use a simple Python program to handle the communicate on the PC side.
to the micro-controller. You need to install Python interpreter and the python-serial
module on the PC for this to work. The KuttyPy IDE should be closed before running
these Python programs, because both of them use the same communication channel.

The program echo.c waits for data from the PC, vis the USB to serial converter,
increment it by one and sends it back. The received data is also send to port B LEDs.

#include <avr/kp.h>

int main(void)

{

uint8_t data;

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 35

DDRB = 255;

uart_init(38400);

for(;;)

{

data = uart_recv_byte();

PORTB = data;

uart_send_byte(data + 1);

}

}

After uploading this program, open a terminal window, and run the python program
echo.py listed below, using the commands:1

$ python3 echo.py

import serial, time

fd = serial.Serial('/dev/ttyUSB0', 38400, stopbits=1, timeout = 1.0)

time.sleep(1) # wait for the uC to reach our code after the reset.

fd.write(b'\x04') # send one byte

print (fd.read(1)) # receive one byte

time.sleep(4) # The port B LEDs will show the result before the program exit.

It should be noted that the Python program resets the uC while opening and closing the
virtual port connection. The one second wait after opening gives enough time for the uC
to start our code, echo.c. While exiting the Python program the uC is reset again. We
have added another sleep() statement so that the result can be seen on port B. While
deploying this board permanently for communication applications it is better to remove
the capacitor C4 (refer to the schematic 2.5.). Once you remove C4, program upload
must be done using the SPI interface, using USBASP programmer, as explained in section
??.

We can rewrite echo.c without using the library functions. The program echo-direct.c
listed below id functionally identical to echo.c

#include <avr/io.h>

int main(void)

{

uint8_t data;

DDRB = 255;

UCSRB = (1 <�< RXEN) | (1 <�< TXEN);

UBRRH = 0; ////38400 baudrate, 8 databit, 1 stopbit, No parity

UBRRL = 12; // At 8MHz (12 =>38400)

UCSRC = (1<�<URSEL) | (1<�<UCSZ1) | (1<�< UCSZ0);

for(;;)

{

while (!(UCSRA & (1<�<RXC))); //wait on Rx

data = UDR; // read a byte

PORTB = data;

1If you are using some USB to Serial converters like MCP20=2200, the virtual com port will appear
as ttyACMx instead of with ttyUSBx.

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 36

while (!(UCSRA & (1<�<UDRE))); // Rx Empty ?

UDR = data + 1;

}

}

4.6 The Analog to Digital Converter (ADC)

Most of the I/O PORT pins of Atmega32 have alternate functions. PA0 to PA7 can be
used as ADC inputs by enabling the built-in ADC. All the pins con�gured as inputs in the
DDRA will become ADC inputs, but the ones con�gured as outputs will remain as digital
output pins. The ADC converts the analog input voltage in to a 10-bit number. The
minimum value represents GND and the maximum value represents the ADC reference
voltage. The reference inputs could be AVCC, an internal 2.56V or a voltage connected
to the AREF pin. The selection is done in software. The ADC operation is controlled via
the registers ADMUX and ADCSRA. The data is read from ADCL (must be read �rst)
and ADCH. If the Left adjust option (ADLAR bit in register ADMUB) is selected, 8 bit
data will be available in ADCL.

The KuttyPy ibrary contains the following functions to use the ADC.

� void adc_enable()

� void adc_disable()

� void adc_set_ref(uint8_t val)

� 0 : Externally applied reference voltage

� 1 : AVCC as reference

� 2 : Interval 2.56 volts reference

� uint16_t read_adc(uint8_t ch) // returns 10 bit data

� uint8_t read_adc_8bit(uint8_t ch) // returns 8 bit data

4.6.1 Reading an Analog Voltage

The example program adc-read.c is listed below. It reads an ADC channel zero and
displays the result on port B, after discarding two LSBs. The result is also converted into
an ASCII string and send to the Serial port. The KuttyPy IDE will receive and display
the data.

#include <avr/kp.h> // Include file for I/O operations

#include <stdlib.h>

int main (void)

{

uint16_t data;

char a[6], *p;

DDRB = 255; // Configure port B as output

adc_enable();

uart_init(38400);

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 37

while (1)

{

data = read_adc(0);

PORTB = data >�> 2; // convert 10 bit in to 8 bit

utoa(data, a, 10); // convert to ASCII string

p = a;

while(*p) uart_send_byte(*p++);

uart_send_byte('\n');

delay_ms(500);

}

}

4.6.2 Programmig ADC registers

The operation of the ADC is controlled mainly by the registers ADCSRA and ADMUX.
Setting ADEN will enable the ADC and setting ADSC will start a conversion. The bit
ADIF is set after a conversion and this bit can be cleared by writing a '1' to it. The
ADSP bits decide the speed of operation of the ADC, by pre-scaling the clock input. The
channel number is selected by the MUX0 to MUX4 bits in the ADMUX rregister. The
reference input is selected by the REFS0 and REFS1 bits.

The program adc-read-direct.c, demonstrates the usage of these registers. If the input
is left unconnected, the noise level on the input is converted and displayed value could be
anywhere between 0 and 255 (in the 8 bit mode).

#include <avr/io.h>

main() // convert channel 0, set pre-scaler to 7

{

DDRB = 255;

ADCSRA = (1 <�< ADEN) | 7; // Enable ADC, set clock pre-scaler

ADMUX = (1 <�< REFS0) | (1 <�< ADLAR); // AVCC ref, Left adjust, read channel 0

while (1)

{

ADCSRA |= (1 <�<ADSC); // Start ADC

while (!(ADCSRA & (1<�<ADIF))) ; // wait for ADC conversion

ADCSRA |= (1 <�<ADIF); //reset ADIF bit

PORTB = ADCH; // 8 bit result to port B

}

}

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 38

Figure 4.2: 8 bit Timer/Counter0 Schematic

4.7 Timer/Counters

ATmega16 has three counter/timer units. Two of them are of 8 bit size and one is 16
bit. The counter input could be derived from the internal clock or from an external
source. The output of the counter is compared with setpoint registers and di�erent types
of actions are taken on compare match. The mode of operation of Counter/Timer is
programmed by setting the bits in the control registers. These circuits are useful for time
interval measurements and generating di�erent kinds of waveforms.

4.7.1 8 bit Timer/Counter0

A block diagram of Timer/Counter0 is shown in �gure4.2. The counter TCNT0 gets its
input and control signals from the control logic circuit. The counter output is compared
with a Output Compare Register OCR0 and a compare match can trigger di�erent types
of actions, like generating a waveform on OC0 (pin 4 of Atmega32, same as PB3). The
mode of operation is decided by the register TCCR0, shown below:

The 8MHz system clock is divided by 8 (csb =2, refer to table below) to get a 1MHz
input to the counter. The OCR0 register is set to 99. The mode bits are set such that the
when the counter value reaches the OCR0, the output is toggled and counter is cleared.
This will result in the waveform generator output toggles after every 100 clock cycles,
giving a 5kHz sqaurewave on pin OC0 (PB3). You may view this on an oscilloscope.
If you do not have one, connect a loudspeaker with a 100Ω series resistor from PB3 to
ground. We have used expEYES for viewing and characterizing the waveforms generated
by microHOPE.

Changing ocrval to 199 will give output 2.5kHz on the output. The output frequency
is given by the relation

f =
fclock

2.N.(1 + OCR0)

where fclock is the system clock and N is the clock division factor, as shown below.

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 39

The library contains the following functions to handle TC0.
Let us start using Timer/Counter0 with the help of the following functions.

� void sqwave_tc0(uint8_t csb, uint8_t ocrval) : generates a square wave on OC0,
whose frequency is decided by the clock select bits (csb) and ocrval.

� void pwm_tc0(uint8_t csb, uint8_t ocrval)

This program sq-tc0.c listed below generates a square wave on PB0.

#include <avr/kp.h>

csb = 2; // Clock select bits

ocrval = 99; // Output Compare register vaule

int main()

{

sqwave_tc0(csb, ocrval);

}

The clock selection bits are set to 2, means the system clock is divided by 8, resulting
in 1MHz. The Output Compare Register is set to 99. After counting 100 clock cycles
the counter will be reset and the PB3 pin will toggle. One cycle takes 200 uS, resulting
in a frequency of 5000 Hz. The output waveform is fed to SEElab oscilloscope and a
screenshot is shown in �gure4.3.a.

This function generates a Pulse Width Modulated waveform on OC0, whose frequency
is decided by the clock select bits (csb) and the duty cycle by the ocrval. The output OC0
is cleared when the counter reaches the OCR0 value, the counter proceeds upto 255 and
then sets OC0. The program pwm-tc0.c generates a 3.9 kHz PWM with 25% dutycycle.

uint8_t csb = 2; // Clock select bits uint8_t

ocrval = 63; // Output Compare register vaule

int main()

{

pwm_tc0(csb, ocrval);

}

PWM waveforms are often used for generating analog DC voltages, in 0 to 5 volts range,
by �ltering it using an RC circuit. It is better to set a higher frequency so that the �lter
RC value could be small. The frequency can be made 31.25kHz by setting csb=1. The
DC level is decided by the value of OCR0, ranging from 0 to 255. Once you learn howto
manipulate the control registers, the same thing can be done without calling the library
function, as shown below.

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 40

Figure 4.3: (a)Squarewave on TC0(b)PWM waveform on TC0

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 41

Figure 4.4: 16 bit Timer/Counter1 schematic

// example : pwm-tc0-direct.c

#include <avr/io.h>

uint8_t csb = 1; // Clock select bits uint8_t

uint8_t ocrval = 255/4; // Output Compare register vaule

int main()

{

// Set TCCR0 in the Fast PWM mode

TCCR0 =(1 <�< WGM01) | (1 <�< WGM00) | (1 <�< COM01) | csb;

OCR0 = ocrval;

TCNT0 = 0;

DDRB |= (1 <�< PB3); // Set PB3(OC0) as output

}

Connect a 1k resistor and 100uF capacitor in series from PB3 to ground,as shown below,
and measure the voltage across the capacitor using a voltmeter.

4.7.2 16 bit Timer/Counter1

The Timer/Counter1 has more features like two Output Compare Registers, Input Cap-
ture unit etc., as shown in �gure4.4. The frequency and duty cycle of the waveforms can
be controlled better due to the 16 bit size of the counters. The following functions are
available from the KuttyPy library.

� void sqwave_tc1(uint8_t csb, uint16_t ocra) : generates a square wave on OCA1
(PD5), whose frequency is decided by the clock select bits (csb) and ocra.

� void pwm10_tc1(uint8_t csb, uint16_t ocra) :

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 42

The example program sq-tc1.c generates a 5 kHz square wave.

#include <avr/kp.h>

uint8_t csb = 2; // 2 is divide by 8 option, 1MHz clock in

uint16_t ocra = 50000; // Output Compare register A

int main()

{

sqwave_tc1(csb, ocra);

}

pwm10_tc1(csb, OCRA)

This function generates a PWM waveform with 10bit resolution. The value of ocra should
be from 0 to 1023 to set the duty cycle.

// example : pwm-tc1.c

#include <avr/kp.h>

uint8_t csb = 1; // 1 => 8MHz clock in

uint16_t ocra = 1024/3; // Duty cycle arounf 33%

int main()

{

pwm10_tc1(csb, ocra);

}

4.7.3 8 bit Timer/Counter2

This one is similar to Timer/Counter0.

sqwave_tc2(uint32_t freq)

This function generates a square wave on OC2. The clock selction bits and the OCR2
value are calculated. It is not possible to set all frequency values using this method. The
actual frequency set is returned and displayed on the LCD.

//Example sq-tc2.c

#include <avr/kp.h>

int main()

{

f = set_sqr_tc2(1500);

}

PWM by programming the registers

The example given below demonstrates the usage of TC2 as a PWM waveform generator,
by setting the control register bits. The duty cycle is set to 25% by setting the OCR2 to
one fourth of the maximum.

// example : pwm-tc2.c

#include <avr/io.h>

CHAPTER 4. PROGRAMMING ATMEGA32 USING C LANGUAGE 43

uint8_t csb = 2; // Clock select bits uint8_t

ocrval = 255/4; // Output Compare register vaule

int main()

{

// Set TCCR2 in the Fast PWM mode

TCCR2 =(1 <�< WGM21) | (1 <�< WGM20) | (1 <�< COM21) | csb;

OCR2 = ocrval;

TCNT0 = 0;

DDRD |= (1 <�< PD7); // Set PD7(OC2) as output

}

Chapter 5

Example programs

5.0.1 Voltmeter

An external voltage connected to the ADC channel 0 (PA0) is measured periodically and
displayed on the LCD display. The reference selected is AVCC. The 10 bit data is shifted
twice to make it 8 bit and displayed on port B LEDs. The program voltmeter.c is listed
below.

#include <avr/kp.h> // Include file for I/O operations

int main (void)

{

uint16_t data;

float v;

DDRB = 255; // Configure port B as output

adc_enable();

lcd_init();

while (1)

{

data = read_adc(0);

PORTB = data >�> 2; // convert 10 bit in to 8 bit and send to port B

v = data * 5.0 / 1023;

lcd_clear();

lcd_put_float(v, 3); // 3 decimals

delay_ms(500);

}

}

5.0.2 Temperature Control

A temperature monitor/controller can be made using the LM35 temperature sensor and
a heater controlled by a relay connected to a digital output pin. Connect LM35 output
to PA0. At 1000C , the output of LM35 will be 1 volt. With the internal 2.56 volts as
reference, the ADC output will be around 400 (1.0 / 2.56 * 1023).

Drive the relay contact controlling the heater from PB0, via a transistor. Insert the
following line in the beginning

DDRB = 1

44

CHAPTER 5. EXAMPLE PROGRAMS 45

and within the loop:

if (data > 400) // switch off heater

PORTB = 0;

else if (data < 395) // switch on heater

PORTB = 1;

The heater will be switched OFF when the ADC output is greater than 400. It will be
switched ON only when the output goes below 395. The window of 6 is given to avoid
the relay chattering.

5.0.3 A simple Oscilloscope

The program cro.c can waits for a command byte from the PC. On receiving a '1', it
digitizes the input at PA0 500 times, with 100 microseconds in between samples, and sends
the data to the PC. The program cro.py sends the necessary command, receives the data
and displays it as shown in the �gure5.1. The C program running on the micro-controller
is listed below.

#include <avr/io.h>

#define READBLOCK 1 // code for readblock is 1

#define NS 500 // upto1800 for ATmega32

#define TG 100 // 100 usec between samples

uint8_t tmp8, dbuffer[NS];

uint16_t tmp16;

int main (void)

{

// UART at 38400 baud, 8, 1stop, No parity

UCSRB = (1 <�< RXEN) | (1 <�< TXEN); UBRRH = 0;

UBRRL = 12;

UCSRC = (1 <�<URSEL) | (1 <�< UCSZ1) | (1 <�< UCSZ0);

ADCSRA = (1 <�< ADEN); // Enable ADC

for(;;)

{

while (!(UCSRA & (1<�<RXC))); // wait for the PC

if(UDR == 1) // '1' is our command

{

TCCR1B = (1 <�< CS11);

ADMUX = (1 <�< REFS0) |(1 <�< ADLAR) | 0;

ADCSRA |= ADIF;

for(tmp16 = 0; tmp16 < NS; ++tmp16)

{

TCNT1 = 1; // counter for TG

ADCSRA |= (1 <�< ADSC) | 1; // Start ADC

while (!(ADCSRA & (1<�<ADIF))); // Done ?

dbuffer[tmp16] = ADCH; // Collect Data

ADCSRA |= ADIF; // reset ADC DONE flag

CHAPTER 5. EXAMPLE PROGRAMS 46

Figure 5.1: Oscilloscope screen shot

while(TCNT1L < TG) ; // Wait TG usecs

}

while(!(UCSRA & (1 <�<UDRE))); // Wait Tx empty

UDR = 'D'; // Send a 'D' first

for(tmp16=0; tmp16 < NS; ++tmp16) // Send to the PC

{

while(!(UCSRA & (1 <�<UDRE)));

UDR = dbuffer[tmp16];

}

}

}

}

The Python program cro.py

import serial, struct, time

import numpy as np

import matplotlib.pyplot as plt

NP = 500

TG = 100

fd=serial.Serial('/dev/ttyACM0',38400,stopbits=1,timeout = 1.0)

fd.flush()

time.sleep(1)

fig=plt.figure()

plt.axis([0, NP*TG/1000, 0, 5])

plt.ion()

plt.show()

va = ta = range(NP)

line, = plt.plot(ta,va)

while True:

fd.write(b'\x01') # 1 is the readblock command for uC end

CHAPTER 5. EXAMPLE PROGRAMS 47

print (fd.read()) # This must be a 'D'

data = fd.read(NP)

raw = struct.unpack('B'* NP, data) # 8 bit data in byte array

ta = []

va = []

for i in range(NP):

ta.append(0.001 * i * TG)

convert time from microseconds to milliseconds va.append(raw[i] * 5.0 / 255)

line.set_xdata(ta)

line.set_ydata(va)

plt.draw()

plt.pause(0.05)

5.0.4 Frequency Counter

Timer/Counter can be used for timing applications, like measuring the time elapsed be-
tween two events or counting the number of pulse inputs during a speci�ed time interval.
The program freq-counter.c measures the frequency of the pulse connected to PB0 and
displays it on the LCD display. A 1000 Hz pulse is generated on PD7.

#include <avr/kp.h> // Include file for libkp

int main()

{

uint32_t f;

set_sqr_tc2(1000); // Set a square wave on TC2 output (PD7)

lcd_init();

while(1)

{

f = measure_freq(); // Measures on T1 (PB1)

lcd_clear();

lcd_put_string("f=");

lcd_put_long(f);

delay_ms(200);

}

}

Connect PD7 to PB1 and upload the program freq-counter.c to read the frequency on
the LCD display. You can also connect PB1 to an external pulse source to measure its
frequency. The maximum frequency that can be measured is limited by the size of the
counter, that is 63535, means we it can handle upto around 126 kHz.

5.0.4.1 Distance Measurement

This technique is used for measuring distance using an ultrasound echo module HY-SR04,
using ultra-sound-echo.c. The trigger is connected to PB0 and the echo is connected
to PB1.

#include <avr/kp.h>

int vsby2 = 17; // velocity of sound in air = 34 mS/cm

CHAPTER 5. EXAMPLE PROGRAMS 48

int main()

{

uint32_t x;

DDRB |= (1 <�< PB0); // set PB0 as output

DDRB &= ~(1 <�< PB1); // and PB1 as inpt

lcd_init();

while(1)

{

PORTB |= (1 <�< PB0); // set PB0 HIGH

delay_100us(1);

PORTB &= ~(1 <�< PB0); // set PB0 LOW

delay_100us(5); // Wait for a while to avoid false triggering

start_timer();

while((PINB & 2) != 0) ; // Wait for LOW on PB1

x = read_timer() + 400;

lcd_clear();

lcd_put_long(x*vsby2/1000); // distance in cm

delay_ms(500);

}

}

	Introduction
	The micro-processor

	AVR series Micro-controllers
	AVR Architecture
	Special Function Registers (SFR)

	Writing Source Code and Assembling/Compiling

	Assembly Language Programming
	Format of an Assembler Program
	Writing, Assembling and Uploading
	Using command line programs

	Input/Output ports of Atmega32
	How to view the Register Contents
	Using the Pre-processor Option

	Atmega32 Instruction Set
	Data Transfer, Addressing Modeshttps://www.arxterra.com/5-avr-branching/
	Register Direct (Single Register)
	Register Direct (Two Registers)
	Load Immediate
	Data Direct
	Defining variables in memory
	Data Indirect

	Variable Initialization
	Storing to the Stack, PUSH and POP
	I/O Direct

	Arithmetic and Logic
	Program Flow Control
	Jump instructions
	Calling a Subroutine
	Interrupt, Call from anywhere

	Output of the Assembler
	Using Pre-processor, .s and .S
	Example Programs
	R2R DAC on Port C
	Sine wave Generator

	Programming Atmega32 using C language
	Blinking LED
	The Kuttypy Library
	Creating and testing the Static Library

	Macros to TEST, SET and Clear BITs
	Example Programs

	The alphanumeric LCD Display
	Serial Communication Port
	Communication between PC and uC, via USB port

	The Analog to Digital Converter (ADC)
	Reading an Analog Voltage
	Programmig ADC registers

	Timer/Counters
	8 bit Timer/Counter0
	16 bit Timer/Counter1
	8 bit Timer/Counter2

	Example programs
	Voltmeter
	Temperature Control
	A simple Oscilloscope
	Frequency Counter
	Distance Measurement

